Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice

Lab Invest. 2002 Sep;82(9):1155-66. doi: 10.1097/01.lab.0000028822.94883.8a.

Abstract

Infection of susceptible mice with Plasmodium berghei Anka leads to a syndrome of severe or cerebral malaria. Tumor necrosis factor (TNF) contributes to this syndrome, apparently by acting on its receptor 2 (TNFR2) because TNFR1-/- are susceptible, whereas TNFR2-/- mice are resistant. In this work, we confirmed the essential role of the TNFR2 in cerebral malaria because 6 to 8 days after Plasmodium berghei Anka infection, hypothermia, coma, and death were observed in +/+ or TNFR1-/-, but never in TNFR2-/-, mice. TNF production, evaluated by the serum levels or the mRNA levels in the brain, spleen or lung, was similar in +/+, TNFR1-/-, or TNFR2-/- mice. Macrophage or parasitized red blood cell sequestration in brain or lung was similar in TNFR1-/- and TNFR2-/- mice. Accordingly, up-regulation of CD54 or CD40 in brain or lung was also similar in TNFR1-/- or TNFR2-/- mice. Platelet loss, manifested by thrombocytopenia and the presence of microparticles in plasma, was similar in TNFR1-/- or TNFR2-/- mice. Breakdown of the blood-brain barrier, detected by the diffusion of tracers, was attenuated in both TNFR1-/- and TNFR2-/-, compared with +/+, mice. Endothelial cells from brain capillaries, examined by transmission electron microscopy, were similar in infected TNFR1-/- or TNFR2-/- mice, whereas the basement membrane was enlarged in TNFR1-/- mice. Hypothermic mice were also hyperglycemic, and this was evident in +/+ and TNFR1-/-, but not in TNFR2-/-, mice. In addition, infected +/+ and TNFR1-/- mice became insulin resistant, while in contrast TNFR2-/- became extremely insulin sensitive. This study supports the possibility that coma and death are mediated not by cell sequestration or breakdown of vascular permeability, similar in TNFR1-/- or TNFR2-/- mice, but by metabolic disturbances selectively mediated by the TNFR2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD / physiology*
  • Brain / blood supply
  • CD4 Antigens / genetics
  • CD40 Antigens / genetics
  • CD40 Ligand / genetics
  • Capillary Permeability
  • Coma / etiology
  • Erythrocytes / physiology
  • Insulin / pharmacology
  • Macrophages / physiology
  • Malaria, Cerebral / etiology*
  • Malaria, Cerebral / mortality
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred CBA
  • RNA, Messenger / analysis
  • Receptors, Tumor Necrosis Factor / physiology*
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Thrombocytopenia / etiology

Substances

  • Antigens, CD
  • CD4 Antigens
  • CD40 Antigens
  • Insulin
  • RNA, Messenger
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • CD40 Ligand