Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non-asthmatic and asthmatic subjects

Clin Exp Allergy. 2002 Sep;32(9):1285-92. doi: 10.1046/j.1365-2745.2002.01435.x.

Abstract

Background: Although epidemiological as well as in vivo exposure studies suggest that ozone (O3) and nitrogen dioxide (NO2) may play a role in airway diseases such as asthma, the underlying mechanisms are not clear.

Objective: Our aim was to investigate the effect of O3 and NO2 on the permeability of human bronchial epithelial cell (HBEC) cultures obtained from non-atopic non-asthmatic (non-asthmatics) and atopic mild asthmatic (asthmatics) individuals.

Methods: We cultured HBECs from bronchial biopsies of non-asthmatics and asthmatics, and exposed these for 6 h to air, 10 to 100 parts per billion (p.p.b.) O3, or to 100 to 400 p.p.b. NO2, and assessed changes in electrical resistance (ER) and movement of 14C-BSA across the cell cultures.

Results: Although exposure to either O3 or NO2 did not alter the permeability of HBEC cultures of non-asthmatics, 10 to 100 p.p.b. O3 and 400 p.p.b. NO2 significantly decreased the ER of HBEC cultures of asthmatics, when compared with exposure to air. Additionally, 10, 50 and 100 p.p.b. O3 led to a significant increase in the movement of 14C-BSA across asthmatic HBEC cultures, after 6 h of exposure (medians = 1.73%; P < 0.01, 1.50%; P < 0.05 and 1.53%, P < 0.05, respectively), compared with air exposed cultures (median = 0.89%). Similarly, exposure for 6 h to both 200 and 400 p.p.b. NO2 significantly increased the movement of 14C-BSA across asthmatic HBEC cultures, when compared with air exposure. A comparison of data obtained from the two study groups demonstrated that 10 to 100 p.p.b. O3- and 200 to 400 p.p.b. NO2-induced epithelial permeability was greater in cultures of asthmatics compared with non-asthmatics.

Conclusion: These results suggest that HBECs of asthmatics may be more susceptible to the deleterious effects of these pollutants. Whether in patients with asthma the greater susceptibility of bronchial epithelial cells to O3 and NO2 contributes to the development of the disease, or is a secondary characteristic of this condition, remains to be determined.

MeSH terms

  • Adult
  • Air Pollutants / pharmacokinetics*
  • Asthma / physiopathology*
  • Bronchi / drug effects*
  • Case-Control Studies
  • Cell Membrane Permeability
  • Cells, Cultured
  • Epithelial Cells / drug effects*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Nitrogen Dioxide / pharmacokinetics*
  • Ozone / pharmacokinetics*
  • Statistics, Nonparametric

Substances

  • Air Pollutants
  • Ozone
  • Nitrogen Dioxide