[Recovery coefficients for the quantification of the arterial input functions from dynamic PET measurements: experimental and theoretical determination]

Nuklearmedizin. 2002;41(4):184-90.
[Article in German]


Aim: For kinetic modelling of dynamic PET data, the arterial input function can be determined directly from the PET scans if a large artery is visualized on the images. It was the purpose of this study to experimentally and theoretically determine recovery coefficients for cylinders as a function of the diameter and level of background activity.

Methods: The measurements were performed using a phantom with seven cylinder inserts (Ø = 5-46 mm). The cylinders were filled with an aqueous 68Ga solution while the main chamber was filled with a 18F solution in order to obtain a varying concentration ratio between the cylinders and the background due to the different isotope half lives. After iterative image reconstruction, the activity concentrations were measured in the center of the cylinders and the recovery coefficients were calculated as a function of the diameter and the background activity. Based on the imaging properties of the PET system, we also developed a model for the quantitative assessment of recovery coefficients.

Results: The functional dependence of the measured recovery data from the cylinder diameter and the concentration ratio is well described by our model. For dynamic PET measurements, the recovery correction must take into account the decreasing concentration ratio between the blood vessel and the surrounding tissue. Under the realized measurement and data analysis conditions, a recovery correction is required for vessels with a diameter of up to 25 mm.

Conclusions: Based on the experimentally verified model, the activity concentration in large arteries can be calculated from the measured activity concentration in the blood vessel and the background activity. The presented approach offers the possibility to determine the arterial input function for pharmacokinetic PET studies non-invasively from large arteries (especially the aorta).

Publication types

  • English Abstract

MeSH terms

  • Humans
  • Mathematics
  • Metabolic Clearance Rate
  • Models, Theoretical
  • Phantoms, Imaging*
  • Radioisotopes* / pharmacokinetics
  • Tomography, Emission-Computed / methods*


  • Radioisotopes