Lhcb Transcription Is Coordinated with Cell Size and Chlorophyll Accumulation (Studies on Fluorescence-Activated, Cell-Sorter-Purified Single Cells from Wild-Type and immutans Arabidopsis thaliana)

Plant Physiol. 1996 Nov;112(3):953-963. doi: 10.1104/pp.112.3.953.


To study the mechanisms that integrate pigment and chlorophyll a/b-binding apoprotein biosynthesis during light-harvesting complex II assembly, we have examined [beta]-glucuronidase (GUS) enzyme activities, chlorophyll contents, and cell sizes in fluorescence-activated, cell-sorting-separated single cells from transgenic Arabidopsis thaliana wild-type and immutans variegation mutant plants that express an Lhcb (photosystem II chlorophyll a/b-binding polypeptide gene)/GUS promoter fusion. We found that GUS activities are positively correlated with chlorophyll content and cell size in green cells from the control and immutans plants, indicating that Lhcb gene transcription is coordinated with cell size in this species. Compared with the control plants, however, chlorophyll production is enhanced in the green cells of immutans; this may represent part of a strategy to maximize photosynthesis in the green sectors to compensate for a lack of photosynthesis in the white sectors of the mutant. Lhcb transcription is significantly higher in pure-white cells of the transgenic immutans plants than in pure-white cells from norflurazon-treated, photooxidized A. thaliana leaves. This suggests that immutans partially uncouples Lhcb transcription from its normal dependence on chlorophyll accumulation and chloroplast development. We conclude that immutans may play a role in regulating Lhcb transcription, and may be a key component in the signal transduction pathways that control chloroplast biogenesis.