Maize Root Phytase (Purification, Characterization, and Localization of Enzyme Activity and Its Putative Substrate)

Plant Physiol. 1996 Dec;112(4):1429-1436. doi: 10.1104/pp.112.4.1429.

Abstract

Three phytase (EC 3.1.3.26) isoforms from the roots of 8-d-old maize (Zea mays L. var Consul) seedlings were separated from phosphatases and purified to near homogeneity. The molecular mass of the native protein was 71 kD, and the isoelectric points of the three isoforms were pH 5.0, 4.9, and 4.8. Each of the three isoforms consisted of two subunits with a molecular mass of 38 kD. The temperature and pH optima (40[deg]C, pH 5.0) of these three isoforms, as well as the apparent Michaelis constants for sodium inositol hexakisphosphate (phytate) (43, 25, and 24 [mu]M) as determined by the release of inorganic phosphate, were only slightly different. Phytate concentrations higher than 300 [mu]M were inhibitory to all three isoforms. In contrast, the dephosphorylation of 4-nitrophenyl phosphate was not inhibited by any substrate concentration, but the Michaelis constants for this substrate were considerably higher (137-157 [mu]M). Hydrolysis of phytate by the phytase isoforms is a nonrandom reaction. D/L-Inositol-1,2,3,4,5- pentakisphosphate was identified as the first and D/L-inositol-1,2,5,6-tetrakisphosphate as the second intermediate in phytate hydrolysis. Phytase activity was localized in root slices. Although phosphatase activity was present in the stele and the cortex of the primary root, phytase activity was confined to the endodermis. Phytate was identified as the putative native substrate in maize roots (45 [mu]g P g-1 dry matter). It was readily labeled upon supplying [32P]phosphate to the roots.