Long-range correlations in the electric signals that precede rupture

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011902. doi: 10.1103/PhysRevE.66.011902. Epub 2002 Jul 12.

Abstract

The Smoluchowski-Chapman-Kolmogorov functional equation is applied to the electric signals that precede rupture. The results suggest a non-Markovian character of the analyzed data. The rescaled range Hurst and detrended fluctuation analyses, as well as that related with the "mean distance a walker spanned," lead to power-law exponents, which are consistent with the existence of long-range correlations. A "universality" in the power spectrum characteristics of these signals emerges, if an analysis is made (not in the conventional time frame, but) in the "natural" time domain. Within this frame, it seems that certain power spectrum characteristics of ion current fluctuations in membrane channels distinguish them from the electric signals preceding rupture. The latter exhibit a behavior compatible with that expected from a model based on the random field Ising Hamiltonian at the critical point.