Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts

Development. 2002 Oct;129(20):4843-53.


Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Division
  • Cells, Cultured
  • Cerebral Cortex / cytology*
  • Cerebral Cortex / embryology*
  • Embryonic Induction
  • Female
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Knockout
  • Multipotent Stem Cells / physiology*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Neurons / metabolism*
  • Tubulin / metabolism


  • Membrane Proteins
  • Nerve Tissue Proteins
  • Numb protein, mouse
  • Tubulin