Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;43(4):584-94.
doi: 10.1016/s0028-3908(02)00169-7.

Pre- and postsynaptic properties of somatic and dendritic inhibition in dentate gyrus

Affiliations

Pre- and postsynaptic properties of somatic and dendritic inhibition in dentate gyrus

Sarah C Harney et al. Neuropharmacology. 2002 Sep.

Abstract

We compared somatic and dendritic inhibition in paired recordings from two classes of anatomically identified interneurons and granule cells of the dentate gyrus. Inhibitory postsynaptic current (IPSC) amplitude and decay were remarkably similar at somatic and dendritic synapses. Slower IPSC rise times and longer latencies at dendritic synapses were consistent with their distal location, without requiring differences in postsynaptic gamma-aminobutyric acid type A (GABA(A)) receptor properties. In contrast, higher transmission failure rate and greater paired-pulse depression at dendritic synapses suggest that somatic and dendritic inhibition differ in presynaptic properties. Cholinergic input has been suggested to modulate hippocampal rhythmicity as well as episodic memory function. We therefore tested the effects of acetylcholine (ACh) on paired IPSCs and on spontaneous synaptic activity in interneurons and granule cells. We found no effect of ACh on paired IPSCs; however, spontaneous IPSCs recorded in granule cells were enhanced in amplitude and frequency. ACh potentiated spontaneous excitatory postsynaptic potentials (sEPSPs) and induced spiking in both types of interneuron, and preferentially increased sEPSP frequency in dendritic interneurons. Our findings suggest that patterns of activity in the two classes of interneurons, coupled with differences in their presynaptic properties, are likely to determine the roles of somatic and dendritic inhibition in network function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources