Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays

Microbiology. 2002 Oct;148(Pt 10):3129-3138. doi: 10.1099/00221287-148-10-3129.


Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis. Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass alpha-crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Base Sequence
  • DNA-Binding Proteins
  • Gene Expression Profiling
  • Gene Expression Regulation, Bacterial*
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / metabolism*
  • Heat-Shock Response*
  • Humans
  • Molecular Sequence Data
  • Mutation
  • Mycobacterium tuberculosis / genetics
  • Mycobacterium tuberculosis / physiology*
  • Oligonucleotide Array Sequence Analysis
  • Regulon
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Transcription, Genetic


  • Bacterial Proteins
  • DNA-Binding Proteins
  • Heat-Shock Proteins
  • HspR protein, bacteria
  • Repressor Proteins