Nontuberculous mycobacteria in the environment

Clin Chest Med. 2002 Sep;23(3):529-51. doi: 10.1016/s0272-5231(02)00014-x.


It is likely that the incidence of infection by environmental opportunistic mycobacteria will continue to rise. Part of the rise will be caused by the increased awareness of these microbes as human pathogens and improvements in methods of detection and culture. Clinicians and microbiologists will continue to be challenged by the introduction of new species to the already long list of mycobacterial opportunists (see Table 3). The incidence of infection will also rise because an increasing proportion of the population is aging or subject to some type of immunosuppression. A second reason for an increase in the incidence of environmental mycobacterial infection is that these microbes are everywhere. They are present in water, biofilms, soil, and aerosols. They are natural inhabitants of the human environment, especially drinking water distribution systems. Thus, it is likely that everyone is exposed on a daily basis. It is likely that certain human activities can lead to selection of mycobacteria. Important lessons have been taught by study of cases of hypersensitivity pneumonitis associated with exposure to metalworking fluid. First, the implicated metalworking fluids contained water, the likely source of the mycobacteria. Second, the metalworking fluids contain hydrocarbons (e.g., pine oils) and biocides (e.g., morpholine) both of which are substrates for the growth of mycobacteria [53,193]. Third, outbreak of disease followed disinfection of the metalworking fluid [136,137]. Although the metalworking fluid was contaminated with microorganisms, it was only after disinfection that symptoms developed in the workers. Because mycobacteria are resistant to disinfectants, it is likely that the recovery of the mycobacteria from the metalworking fluid [137] was caused by their selection. Disinfection may also contribute, in part, to the persistence of M avium and M intracellulare in drinking water distribution systems [33,89,240]. M avium and M intracellulare are many times more resistant to chlorine, chloramine, chlorine dioxide, and ozone than are other water-borne microorganisms [141,236]. Consequently, disinfection of drinking water results in selection of mycobacteria. In the absence of competitors, even the slowly growing mycobacteria can grow in the distribution system [33]. It is likely that hypersensitivity pneumonitis in lifeguards and therapy pool attendants [139] is caused by a similar scenario.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Environmental Microbiology*
  • Humans
  • Mycobacterium Infections, Nontuberculous / microbiology
  • Nontuberculous Mycobacteria / pathogenicity
  • Nontuberculous Mycobacteria / physiology*
  • Tuberculosis, Pulmonary / microbiology