Peptides and Ageing

Neuro Endocrinol Lett. 2002:23 Suppl 3:11-144.

Abstract

A technology has been developed for manufacturing of biologically active complex peptide preparations from extracts of different tissues. In particular, the pineal preparation (Epithalamin) augments the in vitro outgrowth of explants from the pineal gland but not from other tissues, the latter being stimulated by peptide preparations from respective tissues. Epithalamin increases melatonin production by the pineal gland of rats, improves immunological parameters in rats and mice, produces anticarcinogenic effects in different experimental models, stimulates antioxidant defenses, and restores the reproductive function in old rats. These effects are combined in the ability of Epithalamin to increase the lifespan in rats, mice, and fruit flies. Many of these effects are reproduced in clinical trials, which have demonstrated the geroprotector activity of Epithalamin in humans. Among the effects of the thymic preparation Thymalin, those related to its ability to stimulate immunity are the most prominent. This ability is associated with anticarcinogenic and geroprotector activities. Clinical trials of the peptide preparations obtained from other organs including the prostate, the cerebral cortex, and the eye retina, have demonstrated beneficial effects reflected by the improvement of the conditions of respective organs. Based on the data about the amino acid compositions of the peptide preparations, novel principles of the design of biologically active short peptides possessing tissue-specific activities has been developed. Dipeptides specific for the thymus and tetrapeptides specific for the heart, liver, brain cortex, and pineal glands stimulate the in vitro outgrowth of explants of respective organs. Interestingly, for eye retina and the pineal gland, a common tetrapeptide Ala-Glu-Asp-Gly (Epitalon) has been designed, probably reflecting the common embryonal origin of these two organs. Epitalon reproduces the effects of Epithalamin including those related to its geroprotector activity. In particular, Epitalon increases the lifespan of mice and fruit flies and restores the circadian rhythms of melatonin and cortisol production in old rhesus monkeys. At the same time, Epitalon prolongs the functional integrity of the eye retina in Campbell rats with hereditary Retinitis Pigmentosa and improves the visual functions in patients with pigmental retinal degeneration. Changes in gene expression were observed to be produced by the short peptide preparations. Therefore, the effects of Epitalon are suggested to be mediated by transcriptional machinery common for the pineal gland and the retina and, probably, for regulation of melatonin production in fruit flies. Based on three decades of studies of the peptide preparations, the peptide theory of ageing has been put forward. According this theory, ageing is an evolutionary determined biological process of changes in gene expression resulting in impaired synthesis of regulatory and tissue-specific peptides in organs and tissues, which provokes their structural and functional changes and the development of diseases. Correspondingly, correction of such disorders by means of stimulation of peptide production in the organism or through their delivery can promote the normalisation of disturbed body functions.

Publication types

  • Review

MeSH terms

  • Aging / drug effects
  • Aging / physiology*
  • Animals
  • Humans
  • Oligopeptides / pharmacology
  • Peptide Hormones / physiology*
  • Peptide Hormones / therapeutic use
  • Peptides / physiology
  • Pineal Gland / physiology

Substances

  • Oligopeptides
  • Peptide Hormones
  • Peptides
  • epithalamin
  • alanyl-glutamyl-aspartyl-glycine