The effect of counterion size on the electrical properties of an electrolyte solution in contact with charged planar, cylindrical and spherical surfaces is considered. Electrostatic interaction is considered by means of the mean electrostatic field, while the finite size of particles constituting the electrolyte solution is considered via the excluded volume effect within the lattice statistics. Different sizes of counterion are described by different values of the lattice constant. It is shown that the excluded volume effect considerably decreases the calculated number density of counterions near the charged surface. This effect is more pronounced in cylindrical geometry than in spherical geometry, and less pronounced than in planar geometry.