Positron emission tomography (PET) scanning is evolving as a unique tool for drug development in oncology for improving both the efficacy of established treatment and in evaluating novel anticancer agents. As a non-invasive functional imaging modality, PET has an unrivalled sensitivity when monitoring the pharmacokinetics and pharmacodynamics of drugs and biochemicals when radiolabelled with short living positron-emitting radioisotopes. This is of particular relevance in assessing newer molecular-targeted therapy where conventional evaluation criteria (maximum tolerated dose and tumour shrinkage for example) may be inappropriate. PET has already been applied to a wide number of drugs to demonstrate activity in vivo from standard chemotherapy such as 5-fluorouracil (5-FU) [J Clin Oncol 17 (1999) 1580], to novel molecular agents such as those involved in tumour angiogenesis [Br J Cancer 83 (2000) P6] and antivascular therapy [Proc Annu Meet Am Soc Clin Oncol 19 (2000) 179a]. This review will evaluate the achievements of PET in the drug development process, an approach that promises to facilitate the rapid translation of scientific research into current clinical practice.