Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
- PMID: 12387915
- DOI: 10.1016/s0025-5564(02)00108-6
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
Abstract
A precise definition of the basic reproduction number, R0, is presented for a general compartmental disease transmission model based on a system of ordinary differential equations. It is shown that, if R0<1, then the disease free equilibrium is locally asymptotically stable; whereas if R0>1, then it is unstable. Thus, R0 is a threshold parameter for the model. An analysis of the local centre manifold yields a simple criterion for the existence and stability of super- and sub-threshold endemic equilibria for R0 near one. This criterion, together with the definition of R0, is illustrated by treatment, multigroup, staged progression, multistrain and vector-host models and can be applied to more complex models. The results are significant for disease control.
Similar articles
-
The global stability of an SIRS model with infection age.Math Biosci Eng. 2014 Jun;11(3):449-69. doi: 10.3934/mbe.2014.11.449. Math Biosci Eng. 2014. PMID: 24506548
-
Global dynamics of an SEIR epidemic model with saturating contact rate.Math Biosci. 2003 Sep;185(1):15-32. doi: 10.1016/s0025-5564(03)00087-7. Math Biosci. 2003. PMID: 12900140
-
Global dynamics of discrete mathematical models of tuberculosis.J Biol Dyn. 2024 Dec;18(1):2323724. doi: 10.1080/17513758.2024.2323724. Epub 2024 Mar 17. J Biol Dyn. 2024. PMID: 38493487
-
Perspectives on the basic reproductive ratio.J R Soc Interface. 2005 Sep 22;2(4):281-93. doi: 10.1098/rsif.2005.0042. J R Soc Interface. 2005. PMID: 16849186 Free PMC article. Review.
-
The basic reproduction number (R0) of measles: a systematic review.Lancet Infect Dis. 2017 Dec;17(12):e420-e428. doi: 10.1016/S1473-3099(17)30307-9. Epub 2017 Jul 27. Lancet Infect Dis. 2017. PMID: 28757186 Review.
Cited by
-
When does pathogen evolution maximize the basic reproductive number in well-mixed host-pathogen systems?J Math Biol. 2013 Dec;67(6-7):1533-85. doi: 10.1007/s00285-012-0601-2. Epub 2012 Oct 16. J Math Biol. 2013. PMID: 23070214
-
Modeling the effects of prosocial awareness on COVID-19 dynamics: Case studies on Colombia and India.Nonlinear Dyn. 2021;104(4):4681-4700. doi: 10.1007/s11071-021-06489-x. Epub 2021 May 1. Nonlinear Dyn. 2021. PMID: 33967392 Free PMC article.
-
A century of transitions in New York City's measles dynamics.J R Soc Interface. 2015 May 6;12(106):20150024. doi: 10.1098/rsif.2015.0024. J R Soc Interface. 2015. PMID: 25833244 Free PMC article.
-
Mobility restrictions for the control of epidemics: When do they work?PLoS One. 2020 Jul 6;15(7):e0235731. doi: 10.1371/journal.pone.0235731. eCollection 2020. PLoS One. 2020. PMID: 32628716 Free PMC article.
-
The seasonal reproduction number of dengue fever: impacts of climate on transmission.PeerJ. 2015 Jul 9;3:e1069. doi: 10.7717/peerj.1069. eCollection 2015. PeerJ. 2015. Retraction in: PeerJ. 2016 Oct 4;3:e1069/retraction. doi: 10.7717/peerj.1069/retraction PMID: 26213648 Free PMC article. Retracted.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
