Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function

Appl Opt. 2002 Oct 20;41(30):6289-306. doi: 10.1364/ao.41.006289.

Abstract

The bidirectionality of the upward radiance field in oceanic case 1 waters has been reinvestigated by incorporation of revised parameterizations of inherent optical properties as a function of the chlorophyll concentration (Chl), considering Raman scattering and making the particle phase function shape (beta(rho)) continuously varying along with the Chl. Internal consistency is thus reached, as the decrease in backscattering probability (for increasing Chl) translates into a correlative change in beta(rho). The single particle phase function (previously used) precluded a realistic assessment of bidirectionality for waters with Chl > 1 mg m(-3). This limitation is now removed. For low Chl, Raman emissions significantly affect the radiance field. For moderate Chl (0.1-1 mg m(-3)), new and previous bidirectional parameters remain close. The ocean reflectance anisotropy has implications in ocean color remote-sensing problems, in derivation of coherent water-leaving radiances, in associated calibration-validation activities, and in the merging of data obtained under various geometrical configurations.