Optimal feedback control as a theory of motor coordination
- PMID: 12404008
- DOI: 10.1038/nn963
Optimal feedback control as a theory of motor coordination
Abstract
A central problem in motor control is understanding how the many biomechanical degrees of freedom are coordinated to achieve a common goal. An especially puzzling aspect of coordination is that behavioral goals are achieved reliably and repeatedly with movements rarely reproducible in their detail. Existing theoretical frameworks emphasize either goal achievement or the richness of motor variability, but fail to reconcile the two. Here we propose an alternative theory based on stochastic optimal feedback control. We show that the optimal strategy in the face of uncertainty is to allow variability in redundant (task-irrelevant) dimensions. This strategy does not enforce a desired trajectory, but uses feedback more intelligently, correcting only those deviations that interfere with task goals. From this framework, task-constrained variability, goal-directed corrections, motor synergies, controlled parameters, simplifying rules and discrete coordination modes emerge naturally. We present experimental results from a range of motor tasks to support this theory.
Comment in
-
Optimal strategies for movement: success with variability.Nat Neurosci. 2002 Nov;5(11):1110-1. doi: 10.1038/nn1102-1110. Nat Neurosci. 2002. PMID: 12404002 Review. No abstract available.
Similar articles
-
On theory of motor synergies.Hum Mov Sci. 2010 Oct;29(5):655-83. doi: 10.1016/j.humov.2009.10.005. Hum Mov Sci. 2010. PMID: 20435365
-
Properties of synergies arising from a theory of optimal motor behavior.Neural Comput. 2006 Oct;18(10):2320-42. doi: 10.1162/neco.2006.18.10.2320. Neural Comput. 2006. PMID: 16907628
-
Coordinated turn-and-reach movements. II. Planning in an external frame of reference.J Neurophysiol. 2003 Jan;89(1):290-303. doi: 10.1152/jn.00160.2001. J Neurophysiol. 2003. PMID: 12522180
-
Neurobiology: reconstructing the neural control of leg coordination.Curr Biol. 2009 May 12;19(9):R371-3. doi: 10.1016/j.cub.2009.03.044. Curr Biol. 2009. PMID: 19439260 Review.
-
Probabilistic mechanisms in sensorimotor control.Novartis Found Symp. 2006;270:191-8; discussion 198-202, 232-7. Novartis Found Symp. 2006. PMID: 16649715 Review.
Cited by
-
Centre of pressure versus centre of mass stabilization strategies: the tightrope balancing case.R Soc Open Sci. 2020 Sep 9;7(9):200111. doi: 10.1098/rsos.200111. eCollection 2020 Sep. R Soc Open Sci. 2020. PMID: 33047011 Free PMC article.
-
Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.PLoS Comput Biol. 2016 Apr 1;12(4):e1004861. doi: 10.1371/journal.pcbi.1004861. eCollection 2016 Apr. PLoS Comput Biol. 2016. PMID: 27035587 Free PMC article.
-
The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.Cerebellum. 2016 Apr;15(2):93-103. doi: 10.1007/s12311-015-0685-5. Cerebellum. 2016. PMID: 26112422 Free PMC article. Review.
-
Inverse optimal control with time-varying objectives: application to human jumping movement analysis.Sci Rep. 2020 Jul 7;10(1):11174. doi: 10.1038/s41598-020-67901-x. Sci Rep. 2020. PMID: 32636436 Free PMC article.
-
Online control of reach accuracy in mice.J Neurophysiol. 2020 Dec 1;124(6):1637-1655. doi: 10.1152/jn.00324.2020. Epub 2020 Sep 30. J Neurophysiol. 2020. PMID: 32997569 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
