Border zone geometry increases wall stress after myocardial infarction: contrast echocardiographic assessment

Am J Physiol Heart Circ Physiol. 2003 Feb;284(2):H475-9. doi: 10.1152/ajpheart.00360.2002. Epub 2002 Oct 31.

Abstract

After myocardial infarction (MI), the border zone expands chronically, causing ventricular dilatation and congestive heart failure (CHF). In an ovine model (n = 4) of anteroapical MI that results in CHF, contrast echocardiography was used to image short-axis left ventricular (LV) cross sections and identify border zone myocardium before and after coronary artery ligation. In the border zone at end systole, the LV endocardial curvature (K) decreased from 0.86 +/- 0.33 cm(-1) at baseline to 0.35 +/- 0.19 cm(-1) at 1 h (P < 0.05), corresponding to a mean decrease of 55%. Also in the border zone, the wall thickness (h) decreased from 1.14 +/- 0.26 cm at baseline to 1.01 +/- 0.25 cm at 1 h (P < 0.05), corresponding to a mean decrease of 11%. By Laplace's law, wall stress is inversely proportional to the product K. h. Therefore, a 55% decrease in K results in a 122% increase in circumferential stress; a 11% decrease in h results in a 12% increase in circumferential stress. These findings indicate that after MI, geometric changes cause increased dynamic wall stress, which likely contributes to border zone expansion and remodeling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Contrast Media
  • Echocardiography*
  • Heart / physiopathology*
  • Models, Cardiovascular
  • Myocardial Infarction / diagnostic imaging*
  • Myocardial Infarction / physiopathology*
  • Sheep
  • Stress, Mechanical

Substances

  • Contrast Media