The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds

J Strength Cond Res. 2002 Nov;16(4):606-10.


Snowshoeing is currently ranked as one of the top 20 participatory sports in the United States, and the number of participants almost tripled, from 440,000 to 1.2 million in 1998. Despite this large increase in participation, no scientific evidence exists to quantify any physiologic response to the activity. Therefore, the purpose of this investigation was to assess the energy expenditure of snowshoeing at selected low-level speeds and evaluate its acceptability as a form of aerobic conditioning exercise. Ten habitually active subjects (7 men, 3 women, mean age = 24 +/- 3.9 years, mass = 76.6 +/- 14.5 kg, height = 173.7 +/- 9.6 cm) were recruited. Steady state heart rate data were determined from 2 treadmill tests at 4 and 6 mph. Steady state heart rates at 4 mph and 6 mph from treadmill speeds were then reproduced outdoors under 2 snow conditions, packed, and unpacked snow, while caloric expenditure and speed were determined. Expired gases were collected in Douglas bags for both snowshoe and treadmill trials and then analyzed and corrected indoors for the fractional concentrations of carbon dioxide and oxygen. Data analyses indicate that caloric expenditure during snowshoeing may be considerably higher than previously reported. Snowshoeing on packed snow at 2.95 mph elicited a similar heart rate and energy expenditure response as walking on a treadmill at 4 mph or snowshoeing in unpacked snow at 2.04 mph (Vo(2) = 18.18 +/- 0.8 ml x kg(-1) x min(-1)). Snowshoeing on packed snow at 3.97 mph elicited the same heart rate and energy expenditure response as walking on a treadmill at 6 mph or snowshoeing on unpacked snow at 2.87 mph (Vo(2) = 36.72 +/- 0.8 ml x kg(-1) x min(-1)). Furthermore, increasing walking speed on snow by just 1 mph at slow speeds (2 and 3 mph) resulted in approximately twice the energy expenditure. Our data indicate that current estimates of energy expenditure while snowshoeing underestimate by greater than 50%. Apparently the energy expenditure during snowshoeing is much higher than previously considered and varies considerably because of snow terrain. Furthermore, energy expenditure levels similar to walking can be achieved on snowshoes at much slower speeds. This study represents an original investigation into energy expenditure during snowshoeing.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobic Threshold
  • Analysis of Variance
  • Energy Metabolism / physiology*
  • Exercise Test
  • Female
  • Heart Rate / physiology
  • Humans
  • Male
  • Oxygen Consumption / physiology
  • Physical Fitness
  • Probability
  • Pulmonary Gas Exchange
  • Sampling Studies
  • Sensitivity and Specificity
  • Skiing / physiology*
  • Snow
  • Walking / physiology*