Synthesis and characterization of the first azastibatranes and azabismatranes

Inorg Chem. 2002 Nov 18;41(23):6147-52. doi: 10.1021/ic0257423.

Abstract

Syntheses of title compounds, viz. N(CH2CH2NR)3E (1, E = Sb, R = Me; 4, E = Bi, R = Me; 6, E = Sb, R = SiMe3; 8, E = Bi, R = SiMe3), by the reaction of E(NAlk2)3 (3, E = Sb, Alk = Et; 5, E = Bi, Alk = Me) with N(CH2CH2NMeH)3 (2) or N(CH2CH2NSiMe3H)3 (7) are reported. The reactions of SbCl3 with N[CH2CH2N(Me)Li]3 or N[CH2CH2N(SiMe3)Li]3 and BiCl3 with N[CH2CH2N(SiMe3)Li]3 resulted in compounds 1, 6, and 8, respectively. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry. The X-ray structural study of 8 clearly indicated the presence of transannular interaction BiNdat in this compound, while 6 possesses a long Sb...Ndat distance. The structural data obtained from geometry optimizations on 6 and 8 reproduce experimental trends, i.e., a decrease in the E-Ndat distance from Sb to Bi. The values of electron density in E-Ndat critical point and the Laplacian of charge density for 8 indicate that a closed-shell interaction exists between the metal atom and Ndat atom.