In 1999, we first reported that a white rot fungus, Ceriporiopsis subvermispora produced a series of novel alkylitaconic acids (ceriporic acids). In the present paper we synthesized the metabolite, 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B) by Grignard reaction to analyze chemical properties of the alkylitaconates. Mass spectrometer (MS) and nuclear magnetic resonance (NMR) spectra of the synthetic compound was identical to those of the fungal metabolite isolated. The dicarboxylic acid inhibited autoxidation of Fe(2+) to Fe(3+) as well as reduction of Fe(3+) to Fe(2+) by the strong natural reductants, cysteine, glutathione, and ascorbic acid. The formation of charge transfer complexes (CTCs) between 1-heptadecene-2,3-dicarboxylic acid and oxidized intermediates from phenolic substrates were also observed. Thus, we herein report that the new class of lipid-related metabolites produced by C. subvermispora are potential metabolites participating in the control of iron redox reactions and CTCs formation from oxidized lignin fragments.