Retinal images of three-dimensional scenes often contain regions that are spatially blurred by different amounts, owing to depth variation in the scene and depth-of-focus limitations in the eye. Variations in blur between regions in the retinal image therefore offer a cue to their relative physical depths. In the first experiment we investigated apparent depth ordering in images containing two regions of random texture separated by a vertical sinusoidal border. The texture was sharp on one side of the border, and blurred on the other side. In some presentations the border itself was also blurred. Results showed that blur variation alone is sufficient to determine the apparent depth ordering. A subsequent series of experiments measured blur-discrimination thresholds with stimuli similar to those used in the depth-ordering experiment. Weber fractions for blur discrimination ranged from 0.28 to 0.56. It is concluded that the utility of blur variation as a depth cue is constrained by the relatively mediocre ability of observers to discriminate different levels of blur. Blur is best viewed as a relatively coarse, qualitative depth cue.