Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways

Arch Pharm Res. 2002 Oct;25(5):561-71. doi: 10.1007/BF02976924.


The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, PI3K, phosphatases, ras, raf, MAPK cascades, N x FB, I x B kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The I x B kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gallate (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of I x B x and I x B x in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkappaB activation as well as c-myc, c-jun and c-fos expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Chemoprevention
  • Flavonoids*
  • Humans
  • Neoplasms / prevention & control*
  • Phenols / chemistry
  • Phenols / pharmacology
  • Phenols / therapeutic use*
  • Polymers / chemistry
  • Polymers / pharmacology
  • Polymers / therapeutic use*
  • Polyphenols
  • Signal Transduction / drug effects*
  • Signal Transduction / physiology
  • Tea / chemistry


  • Flavonoids
  • Phenols
  • Polymers
  • Polyphenols
  • Tea