Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands

Prog Brain Res. 2002:139:197-210. doi: 10.1016/s0079-6123(02)39017-4.


The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats with ascites and impaired renal function, a 10-day oral treatment with SR121463 (0.5 mg/kg) totally corrected hyponatremia and restored normal urine excretion. This compound also displayed interesting new properties in a rabbit model of ocular hypertension, decreasing intraocular pressure after single or repeated instillation. Thus, V2 receptor blockade could be of interest in several water-retaining diseases such as the syndrome of inappropriate antidiuretic hormone secretion (SIADH), liver cirrhosis and congestive heart failure and deserves to be widely explored. Finally, further chemical developments in the oxindole family have led to the first specific and orally active V1b receptor antagonists (with SSR149415 as a representative), an awaited class of drugs with expected therapeutic interest mainly in ACTH-secreting tumors and various emotional diseases such as stress-related disorders, anxiety and depression. However, from the recently described tissue localization for this receptor, we could also speculate on other unexpected uses. In conclusion, the development of AVP receptor antagonists is a field of intensive pharmacological and clinical investigation. Selective and orally active compounds are now available to give new insight into the pathophysiological role of AVP and to provide promising drugs.

Publication types

  • Review

MeSH terms

  • Animals
  • Antidiuretic Hormone Receptor Antagonists*
  • Humans
  • Indoles / pharmacology
  • Indoles / therapeutic use
  • Ligands
  • Piperidines / pharmacology
  • Piperidines / therapeutic use
  • Pyrrolidines / pharmacology
  • Pyrrolidines / therapeutic use
  • Quinolones / pharmacology
  • Quinolones / therapeutic use
  • Receptors, Vasopressin / physiology
  • Structure-Activity Relationship


  • 1-(5-chloro-1-((2,4-dimethoxyphenyl)sulfonyl)-3-(2-methoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl)-4-hydroxy-N,N-dimethyl-2-pyrrolidinecarboxamide
  • Antidiuretic Hormone Receptor Antagonists
  • Indoles
  • Ligands
  • Piperidines
  • Pyrrolidines
  • Quinolones
  • Receptors, Vasopressin
  • OPC 21268