Oxidants such as H2O2 are connected to lymphocyte activation, but the molecular mechanisms behind this phenomenon are less clear. Here, I review data suggesting that by inhibiting protein tyrosine phosphatases, H2O2 plays an important role as a secondary messenger in the initiation and amplification of signaling at the antigen receptor. These findings explain why exposure of lymphocytes to H2O2 can mimic the effect of antigen. In addition, more recent data show that antigen receptors themselves are H2O2-generating enzymes and that the oxidative burst in macrophages seems to play a role not only in pathogen killing but also in the activation of these as well as neighboring cells. Thus, by controlling the activity of the negative regulatory phosphatases inside the cell, H2O2 can set and influence critical thresholds for lymphocyte activation.