Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 21;420(6913):320-4.
doi: 10.1038/nature01190.

Multiplicative computation in a visual neuron sensitive to looming

Affiliations
Free article

Multiplicative computation in a visual neuron sensitive to looming

Fabrizio Gabbiani et al. Nature. .
Free article

Abstract

Multiplicative operations are important in sensory processing, but their biophysical implementation remains largely unknown. We investigated an identified neuron (the lobula giant movement detector, LGMD, of locusts) whose output firing rate in response to looming visual stimuli has been described by two models, one of which involves a multiplication. In this model, the LGMD multiplies postsynaptically two inputs (one excitatory, one inhibitory) that converge onto its dendritic tree; in the other model, inhibition is presynaptic to the LGMD. By using selective activation and inactivation of pre- and postsynaptic inhibition, we show that postsynaptic inhibition has a predominant role, suggesting that multiplication is implemented within the neuron itself. Our pharmacological experiments and measurements of firing rate versus membrane potential also reveal that sodium channels act both to advance the response of the LGMD in time and to map membrane potential to firing rate in a nearly exponential manner. These results are consistent with an implementation of multiplication based on dendritic subtraction of two converging inputs encoded logarithmically, followed by exponentiation through active membrane conductances.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms