Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 14;278(7):4572-81.
doi: 10.1074/jbc.M209807200. Epub 2002 Nov 27.

Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization

Affiliations
Free article

Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization

David Matallanas et al. J Biol Chem. .
Free article

Abstract

Ras GTPases include the isoforms H-Ras, K-Ras, and N-Ras. Despite their great biochemical and biological similarities, evidence is mounting suggesting that Ras proteins may not be functionally redundant. A widespread strategy for studying small GTPases is the utilization of dominant inhibitory mutants that specifically block the activation of their respective wild-type proteins. As such, H-Ras N17 has proved to be extremely valuable as a tool to probe Ras functions. However, a comparative study on the inhibitory specificities of H-, K-, and N-Ras N17 mutants has not been approached thus far. Herein, we demonstrate that H-, K-, and N-Ras N17 mutants exhibit markedly distinct inhibitory effects toward H-, K-, and N-Ras. H-Ras N17 can effectively inhibit the activation of all three isoforms. K-Ras N17 completely blocks the activation of K-Ras and is only slightly inhibitory on H-Ras. N-Ras N17 can mainly inhibit N-Ras activation. In light of the recent data on the compartmentalization of H-Ras and K-Ras in the plasma membrane, here we present for the first time a description of N-Ras cellular microlocalization. Overall, our results on Ras N17 mutants specificities exhibit a marked correlation with the localization of the Ras isoforms to distinct membrane microdomains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources