The nucleus accumbens (NAc) plays a crucial role in addiction. We have recently shown that activation of presynaptic metabotropic glutamate 2/3 receptors (mGlu2/3) induces long-term depression (LTD) at glutamatergic synapses in the mouse nucleus accumbens (NAc) through the long lasting inhibition of P/Q-type Ca2+ channels and the cAMP/protein kinase A (PKA) pathway. Because presynaptic mGlu2/3 functions are augmented in the ventral tegmental area of morphine-withdrawn rats, we have evaluated the consequences of opiate treatment on mGlu2/3 LTD at prelimbic NAc glutamatergic synapses. Here we report that mGlu2/3 LTD is abolished after 1 week of withdrawal from chronic morphine treatment; in the morphine-withdrawn group LTD measured 5.99 +/- 4.84% (P < 0.05) compared with 21.13 +/- 5.42% in the sham group. In contrast, chronic morphine treatment did not alter the mechanisms normally underlying mGlu2/3 LTD, such as the cAMP/PKA pathway or P/Q-type Ca2+ channels. This study shows that one long-term consequence of morphine treatment is an alteration of synaptic plasticity at glutamatergic synapses in the NAc. Considering that mGlu2/3 agonists (e.g. LY-354740 used in the present study to induce LTD) reduce behavioural symptoms of morphine withdrawal, these findings could be important in the understanding of the cellular events underlying the dependence-inducing properties of opiates.