Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 82 (12), 1673-84

Rapid Trafficking of Membrane Type 1-matrix Metalloproteinase to the Cell Surface Regulates Progelatinase a Activation

Affiliations

Rapid Trafficking of Membrane Type 1-matrix Metalloproteinase to the Cell Surface Regulates Progelatinase a Activation

Stanley Zucker et al. Lab Invest.

Abstract

Pericellular matrix degradation during cancer invasion and inflammation is dependent on activation of progelatinase A by membrane type 1-matrix metalloproteinase (MT1-MMP); a stoichiometric concentration of tissue inhibitor of metalloproteinase-2 (TIMP-2) is required. Activation of progelatinase A has generally been considered to be a slow process occurring as a result of enhanced expression of MT1-MMP. We herein report that ConA treatment of HT1080 fibrosarcoma cells is followed by MT1-MMP-induced activation of progelatinase A on the cell surface within 1 hour. Cell surface biotinylation, immunohistochemistry, and (125)I-labeled TIMP-2 binding to cell surface MT1-MMP were used to characterize the appearance and function of MT1-MMP on the plasma membrane. Treatment of HT1080 cells with ConA resulted in increased specific binding of (125)I-labeled TIMP-2 to cell surface receptors within 5 minutes. TIMP-2 binds almost exclusively to activated MT1-MMP on the surface of HT1080 cells. MT1-MMP function at the cell surface was also accelerated by treatment of cells with cytochalasin D, an inhibitor of actin filaments, PMA, a stimulator of protein kinase C, and bafilomycin A(1), an inhibitor of lysosome/endosome function. A functional pool of intracellular MT1-MMP available for trafficking to the cell surface was demonstrated by repetitive ConA stimulation. ConA-induced expression of MT1-MMP mRNA (Northern blot analysis) in HT1080 cells was a delayed event (>6 hours). These data suggest that presynthesized MT1-MMP is sorted to a transient storage compartment (trans-Golgi network/endosomes), where it is available for rapid trafficking to the plasma membrane and cell surface proteolytic activity.

Similar articles

See all similar articles

Cited by 26 PubMed Central articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback