A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17179-84. doi: 10.1073/pnas.252537299. Epub 2002 Dec 13.

Abstract

P2X3 and P2X2/3 receptors are highly localized on peripheral and central processes of sensory afferent nerves, and activation of these channels contributes to the pronociceptive effects of ATP. A-317491 is a novel non-nucleotide antagonist of P2X3 and P2X2/3 receptor activation. A-317491 potently blocked recombinant human and rat P2X3 and P2X2/3 receptor-mediated calcium flux (Ki = 22-92 nM) and was highly selective (IC50 >10 microM) over other P2 receptors and other neurotransmitter receptors, ion channels, and enzymes. A-317491 also blocked native P2X3 and P2X2/3 receptors in rat dorsal root ganglion neurons. Blockade of P2X3 containing channels was stereospecific because the R-enantiomer (A-317344) of A-317491 was significantly less active at P2X3 and P2X2/3 receptors. A-317491 dose-dependently (ED50 = 30 micromolkg s.c.) reduced complete Freund's adjuvant-induced thermal hyperalgesia in the rat. A-317491 was most potent (ED50 = 10-15 micromolkg s.c.) in attenuating both thermal hyperalgesia and mechanical allodynia after chronic nerve constriction injury. The R-enantiomer, A-317344, was inactive in these chronic pain models. Although active in chronic pain models, A-317491 was ineffective (ED50 >100 micromolkg s.c.) in reducing nociception in animal models of acute pain, postoperative pain, and visceral pain. The present data indicate that a potent and selective antagonist of P2X3 and P2X2/3 receptors effectively reduces both nerve injury and chronic inflammatory nociception, but P2X3 and P2X2/3 receptor activation may not be a major mediator of acute, acute inflammatory, or visceral pain.

MeSH terms

  • Analgesics, Non-Narcotic / pharmacology*
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Brain / drug effects
  • Brain / physiology
  • Dose-Response Relationship, Drug
  • Hemodynamics / drug effects
  • Male
  • Motor Activity / drug effects
  • Phenols / pharmacology*
  • Polycyclic Compounds / pharmacology*
  • Purinergic P2 Receptor Antagonists*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Purinergic P2X2
  • Receptors, Purinergic P2X3

Substances

  • A-317491
  • Analgesics, Non-Narcotic
  • Anti-Inflammatory Agents, Non-Steroidal
  • P2RX2 protein, human
  • P2RX3 protein, human
  • P2rx2 protein, rat
  • P2rx3 protein, rat
  • Phenols
  • Polycyclic Compounds
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2X2
  • Receptors, Purinergic P2X3