In this study, we examine the effects of Dermatophagoides farinae (Der f), a major source of airborne allergens, on alveolar macrophages (AMs), and we also test its contribution to allergic responses in mice. Der f activated NF-kappaB of AMs and, unlike OVA or LPS stimulation, up-regulated IL-6, TNF-alpha, and NO. In addition, it down-regulated antioxidants, but affected neither the expression nor production of IL-12. Der f-stimulated AMs expressed enhanced levels of costimulatory B7 molecules, supported T cell proliferation, and promoted Th2 cell development. The enhanced accessory function was suppressed by blockade mAbs to B7.2, IL-6, and TNF-alpha and by N-monomethyl-L-arginine, an NO synthase inhibitor, and N-acetylcysteine, a thiol antioxidant, whereas it was augmented by (+/-)-S-nitroso-N-acetylpenicillamine, an NO donor. Arg-Gly-Asp-Ser peptide and neo-glycoproteins galactose-BSA and mannose-BSA inhibited the Der f-induced IL-6 and TNF-alpha productions and enhanced accessory function of AMs. Der f was more potent than OVA for inducing pulmonary eosinophilic inflammation, NO, and serum allergen-specific IgG1 Ab production in mice. AMs from Der f-challenged mice expressed enhanced levels of B7 and augmented T cell proliferation ex vivo. In Der f-challenged mice, respiratory syncytial virus infection (5 x 10(5) pfu; 3 days before Der f instillation) augmented Der f-specific Ab production, whereas dexamethasone (50 mg/kg; 1 h before Der f instillation) diminished the allergic airway inflammation and Ab response. We conclude that AMs are sensitive targets for Der f and that the Der f-induced proinflammatory responses may represent an important mechanism in mediating the development of allergic sensitization and inflammation.