Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope

J Virol. 2003 Jan;77(2):813-20. doi: 10.1128/jvi.77.2.813-820.2003.


Flavivirus envelope proteins have been shown to play a major role in virus assembly. These proteins are anchored into cellular and viral membranes by their C-terminal domain. These domains are composed of two hydrophobic stretches separated by a short hydrophilic segment containing at least one charged residue. We investigated the role of the transmembrane domains of prM and E in the envelope formation of the flavivirus yellow fever virus (YFV). Alanine scanning insertion mutagenesis has been used to examine the role of the transmembrane domains of prM and E in YFV subviral particle formation. Most of the insertions had a dramatic effect on the release of YFV subviral particles. Some of these mutations were introduced into the viral genome. The ability of these mutant viruses to produce infectious particles was severely reduced. The alanine insertions did not affect prM-E heterodimerization. In addition, replacement of the charged residues present in the middle of the transmembrane domains had no effect on subviral particle release. Taken together, these data indicate that the transmembrane domains of prM and E play a crucial role in the biogenesis of YFV envelope. In addition, these data indicate some differences between the transmembrane domains of the hepaciviruses and the flaviviruses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Conserved Sequence
  • Cricetinae
  • Dimerization
  • Molecular Sequence Data
  • Viral Envelope Proteins / chemistry
  • Viral Envelope Proteins / physiology*
  • Virus Assembly*
  • Yellow fever virus / physiology*


  • Viral Envelope Proteins
  • prM protein, Flavivirus