Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin

J Biol Chem. 2003 Mar 7;278(10):8572-9. doi: 10.1074/jbc.M207637200. Epub 2002 Dec 27.

Abstract

Molecular defects in apoptotic pathways are thought to often contribute to the abnormal expansion of malignant cells and their resistance to chemotherapy. Therefore, a comprehensive knowledge of the mechanisms controlling induction of apoptosis and subsequent cellular disintegration could result in improved methods for prognosis and treatment of cancer. In this study, we have examined apoptosis-induced alterations in two proteins, nucleolin and poly(ADP-ribose) polymerase-1 (PARP-1), in U937 leukemia cells. Nucleolin is expressed at high levels in malignant cells, and it is a multifunctional and mobile protein that can shuttle among the nucleolus, nucleoplasm, cytoplasm, and plasma membrane. Here, we report our findings that UV irradiation or camptothecin treatment of U937 cells induced apoptosis and caused a significant change in the levels and localization of nucleolin within the nucleus. Additionally, nucleolin levels were dramatically decreased in extracts containing the cytoplasm and plasma membrane. These alterations could be abrogated by pre-incubation with an inhibitor of PARP-1 (3-aminobenzamide), and our data support a potential role for nucleolin in removing cleaved PARP-1 from dying cells. Furthermore, both nucleolin and cleaved PARP-1 were detected in the culture medium of cells undergoing apoptosis, associated with particles of a size consistent with apoptotic bodies. These results indicate that nucleolin plays an important role in apoptosis, and could be a useful marker for assessing apoptosis or detecting apoptotic bodies. In addition, the data provide a possible explanation for the appearance of nucleolin and PARP-1 autoantibodies in some autoimmune diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Apoptosis* / radiation effects
  • Benzamides / pharmacology
  • Camptothecin / pharmacology
  • Enzyme Inhibitors / pharmacology
  • Humans
  • In Situ Nick-End Labeling
  • Leukemia, Myeloid / enzymology
  • Leukemia, Myeloid / metabolism
  • Leukemia, Myeloid / pathology*
  • Nucleolin
  • Phosphoproteins / metabolism*
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases / metabolism
  • Precipitin Tests
  • RNA-Binding Proteins / metabolism*
  • U937 Cells
  • Ultraviolet Rays

Substances

  • Benzamides
  • Enzyme Inhibitors
  • Phosphoproteins
  • Poly(ADP-ribose) Polymerase Inhibitors
  • RNA-Binding Proteins
  • 3-aminobenzamide
  • Poly(ADP-ribose) Polymerases
  • Camptothecin