Organic anion transporting polypeptides (Oatps/OATPs) form a growing gene superfamily and mediate transport of a wide spectrum of amphipathic organic solutes. Different Oatps/OATPs have partially overlapping and partially distinct substrate preferences for organic solutes such as bile salts, steroid conjugates, thyroid hormones, anionic oligopeptides, drugs, toxins and other xenobiotics. While some Oatps/OATPs are preferentially or even selectively expressed in one tissue such as the liver, others are expressed in multiple organs including the blood-brain barrier (BBB), choroid plexus, lung, heart, intestine, kidney, placenta and testis. This review summarizes the actual state of the rapidly expanding OATP superfamily and covers the structural properties, the genomic classification, the phylogenetic relationships and the functional transport characteristics. In addition, we propose a new species independent and open ended nomenclature and classification system, which is based on divergent evolution and agrees with the guidelines of the Human Genome Nomenclature Committee.