Constitutive and regulated expression of the mouse Dinb (Polkappa) gene encoding DNA polymerase kappa

DNA Repair (Amst). 2003 Jan 2;2(1):91-106. doi: 10.1016/s1568-7864(02)00189-1.

Abstract

A recently discovered group of novel polymerases are characterized by significantly reduced fidelity of DNA synthesis in vitro. This feature is consistent with the relaxed fidelity required for the replicative bypass of various types of base damage that frequently block high fidelity replicative polymerases. The present studies demonstrate that the specialized DNA polymerase kappa (polkappa) is uniquely and preferentially expressed in the adrenal cortex and testis of the mouse, as well as in a variety of other tissues. The adrenal cortex is the sole site of detectable expression of the Polkappa gene in mouse embryos. This adrenal expression pattern is consistent with a requirement for polkappa for the replicative bypass of DNA base damage generated during steroid biosynthesis. The expression pattern of polkappa in the testis is specific for particular stages of spermatogenesis and is distinct from the expression pattern of several other low fidelity DNA polymerases that are also expressed during spermatogenesis. The mouse (but not the human) Polkappa gene is primarily regulated by the p53 gene and is upregulated in response to exposure to various DNA-damaging agents in a p53-dependent manner.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenal Cortex / metabolism
  • Animals
  • DNA Damage / physiology
  • DNA-Directed DNA Polymerase / biosynthesis
  • DNA-Directed DNA Polymerase / genetics*
  • Gene Expression Regulation / physiology*
  • Humans
  • In Vitro Techniques
  • Male
  • Mice
  • Mice, Transgenic
  • Mutation
  • Organ Specificity
  • Testis / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Tumor Suppressor Protein p53
  • DNA-Directed DNA Polymerase
  • POLK protein, human
  • Polk protein, mouse