Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells

J Physiol. 2003 Jan 1;546(Pt 1):175-89. doi: 10.1113/jphysiol.2002.029959.


Functional coupling between Ca(2+)-induced Ca(2+) release (CICR) and quantal exocytosis in 5-hydroxytryptamine-loaded INS-1 beta cells was assessed through the use of carbon fibre amperometry in combination with Fura-2. CICR was evoked by the glucagon-like-peptide-1 (GLP-1) receptor agonist exendin-4 (Ex-4) and was accompanied by quantal secretory events appearing as amperometric current spikes time-locked to the increase of [Ca(2+)](i). The action of Ex-4 was reproduced by treatment with caffeine, and the source of Ca(2+) serving as a stimulus for exocytosis originated from ryanodine and thapsigargin-sensitive Ca(2+) stores. Two distinct patterns of exocytosis occurred within 5 s following the initiation of CICR. Non-summating exocytosis (NS-type) was defined as multiple asynchronous current spikes, and the half-height duration of each spike was 12-48 ms. Summating exocytosis (S-type) was defined as a cluster of spikes. It generated a macroscopic current, the half-height duration of which was 243-682 ms. The release charge of S-type exocytosis was 3.2-fold greater than that of NS-type when measured 2 s following the initiation of secretion. NS-type exocytosis was observed frequently under conditions in which the basal Ca(2+) concentration ([Ca(2+)](B)) was low (75-150 nM), whereas S-type exocytosis predominated under conditions in which the [Ca(2+)](B) was elevated (200-275 nM). Depolarization-induced Ca(2+) influx triggered NS-type exocytosis in most cells tested, irrespective of [Ca(2+)](B). It is concluded that CICR is a highly effective stimulus for exocytosis in INS-1 cells. The increase of [Ca(2+)](i) that accompanies CICR stimulates the asynchronous release of a small number of secretory granules under conditions of low [Ca(2+)](B). When [Ca(2+)](B) is slightly elevated, CICR targets a much larger pool of secretory granules that undergo summating exocytosis. The transition from NS-type to S-type exocytosis may represent an amplification mechanism for Ca(2+)-dependent exocytosis.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 8-Bromo Cyclic Adenosine Monophosphate / pharmacology
  • Animals
  • Caffeine / pharmacology
  • Calcium / metabolism*
  • Cell Line
  • Enzyme Inhibitors / pharmacology
  • Exocytosis / drug effects
  • Exocytosis / physiology*
  • Islets of Langerhans / physiology*
  • Kinetics
  • Rats
  • Ryanodine / pharmacology
  • Thapsigargin / pharmacology


  • Enzyme Inhibitors
  • Ryanodine
  • 8-Bromo Cyclic Adenosine Monophosphate
  • Caffeine
  • Thapsigargin
  • Calcium