Unlike the proposed role of reactive oxygen species in neurodegeneration, acute effects of reactive oxygen on synaptic plasticity are poorly understood. Using rat hippocampal slices, we found that exposure to a high concentration (0.5-5 mm) of H(2)O(2) reduces EPSPs in both potentiated and nonpotentiated synapses. Exposure of the slices to 20 microm H(2)O(2) did not affect expression of preestablished long-term potentiation (LTP) but prevented induction of new LTP and enhanced long-term depression (LTD). Surprisingly, 1 microm H(2)O(2) caused a twofold increase in LTP compared with controls, and it further enhanced NMDA-independent LTP. A low concentration of H(2)O(2) also suppressed LTD. Nifedipine, an L-type calcium channel blocker, did not affect control LTP but blocked effects of both 1 and 20 microm H(2)O(2). Calcineurin inhibitors [FK506 (FR900506) and cyclosporin A but not rapamycin] acted similarly and also restored LTP in the presence of 20 microm H(2)O(2). These results suggest that H(2)O(2) alters NMDA-independent, voltage-gated calcium channel-mediated LTP by activating calcineurin.