The syntheses of C14-methyl analogues of epothilone B and D are described. Conformational analysis using computational methods, X-ray crystallography, and NMR studies showed that the stereochemistry at C14 has a pronounced effect on the conformation of the epoxide region. Biological assays indicated significant differences in their biological activity. Substitution which stabilized conformer I retained significant biological activity. In contrast, substitution which stabilized conformer II provided analogues with no measurable cytotoxicity. The conformation-activity relationships strongly support the importance of conformer I as the bioactive conformation of the epoxide region of epothilone. The approach presented here offers a new perspective on rational design of modified biologically active polyketides.