Effects of MK-801 and CNQX on various neurotoxic responses induced by kainic acid in mice

Mol Cells. 2002 Dec 31;14(3):339-47.

Abstract

Effects of MK-801 (a NMDA receptor blocker) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a non-NMDA receptor blocker) on several neurotoxic responses induced by kainic acid (KA) were examined in ICR mice. In a lethality test, intracerebroventricular (i.c.v.) pretreatment of MK-801 (1 microg), but not CNQX (0.5 microg), attenuated the time to lethality induced by KA (0.5 microg) administered i.c.v. In the memory test (a passive avoidance test), MK-801, but not CNQX, prevented the memory loss induced by KA (0.1 microg). The damage induced by KA (0.1 microg) administered i.c.v. in the hippocampus was markedly concentrated in the CA3 pyramidal neurons. Both MK-801 and CNQX blocked the pyramidal cell death in CA3 hippocampal region induced by KA. In the immunocytochemical study, KA dramatically increased the phosphorylated ERK (p-ERK) and decreased the phosphorylated CREB (p-CREB) in the hippocmapus. Both MK-801 and CNQX attenuated, in part, the increased p-ERK and the decreased p-CREB induced by KA. In addition, both MK-801 and CNQX partially reduced the increased c-Fos and c-Jun protein expression in hippocampus induced by KA. Our results suggest that both NMDA and non-NMDA receptors are involved in supraspinally administered KA-induced pyramidal cell death in CA3 region of hippocampus in the mouse and the p-ERK and the dephosphorylation of CREB protein may play an important role in CA3 region cell death of the hippocampus induced by KA administered supraspinally. Furthermore, c-Fos and c-Jun proteins may serve as third messengers responsible for CA3 pyramidal cell death induced by supraspinally administered KA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology*
  • Animals
  • Apoptosis / drug effects
  • Blotting, Northern
  • Blotting, Western
  • Cyclic AMP Response Element-Binding Protein / metabolism
  • Dizocilpine Maleate / pharmacology*
  • Excitatory Amino Acid Agonists / toxicity*
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Hippocampus / drug effects*
  • Hippocampus / metabolism
  • Immunoenzyme Techniques
  • Injections, Intraventricular
  • Kainic Acid / toxicity*
  • Lethal Dose 50
  • Male
  • Memory Disorders / drug therapy
  • Mice
  • Mice, Inbred ICR
  • Mitogen-Activated Protein Kinases / metabolism
  • Neurons / drug effects*
  • Neurons / metabolism
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-fos / metabolism
  • Proto-Oncogene Proteins c-jun / metabolism
  • RNA Probes
  • Receptors, AMPA / antagonists & inhibitors
  • Receptors, Glutamate / metabolism
  • Receptors, Kainic Acid / antagonists & inhibitors
  • Receptors, Kainic Acid / metabolism
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Survival Rate

Substances

  • Cyclic AMP Response Element-Binding Protein
  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • Proto-Oncogene Proteins c-fos
  • Proto-Oncogene Proteins c-jun
  • RNA Probes
  • Receptors, AMPA
  • Receptors, Glutamate
  • Receptors, Kainic Acid
  • Receptors, N-Methyl-D-Aspartate
  • Dizocilpine Maleate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • Mitogen-Activated Protein Kinases
  • Kainic Acid