Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii

J Chem Ecol. 2002 Nov;28(11):2203-19. doi: 10.1023/a:1021045231501.

Abstract

Olfactometer bioassays and electrophysiological studies showed that the lacewing, Chrysopa sinica, the aphid parasitoid, Aphidius sp., and the coccinellid, Coccinella septempunctata, all responded to volatiles from tea aphids, Toxoptera aurantii, to hexane or ether rinses of tea aphid cuticles, and to synomones released by aphid-damaged tea shoots, as well as to the tea shoot-aphid complex. Each natural enemy spent more time searching on a filter paper treated with tea aphid honeydew than on a blank control filter paper. The interaction between synomones from aphid-damaged shoots and kairomones from tea aphids enhanced the responses to the plant-host complex. There was a significant, logistic dose-response relationship between the number of natural enemies responding and the odor stimulus concentration. Volatile components from the plant-host complex, obtained by air entrainment, were identified by their mass spectra and retention times and confirmed by comparison with standard samples. These were (Z)-3-hexen-1-ol, benzaldehyde, (E)-2-hexenal, (Z)-3-hexenyl acetate, ocimene, linalool, geraniol, indole, and (E)-2-hexenoic acid. The main components in a hexane rinse from tea aphid cuticle were benzaldehyde, undecane, 2,5-hexanedione, 2,5-dihydrothiophene, linalool, 4-methyl-octane, and eicosane, whereas the main components from an ether rinse were (E)-2-hexenoic acid, heptadecane, pentadecane, eicosane, tetratetracontane, and nonadecane. Benzaldehyde elicited the strongest responses from natural enemies in theolfactometer and the largest electroantennogram (EAG) responses. While the amount of odor was small, Coccinella septempunctata was slightly more sensitive than Chrysopa sinica and Aphidius sp. An increase in doses of benzaldehyde, (E)-2-hexenal, and (Z)-3-hexenyl acetate caused the EAG responses of each natural enemy to decrease. When the doses of (Z)-3-hexen-1-ol, linalool, and geranoil increased, EAGs of Chrysopa sinica and Aphidius sp. increased, but EAGs of Coccinella septempunctata decreased. When the dose of indole increased, EAGs of Coccineila septempunctata decreased, but those of Aphidius sp. increased. This study demonstrates that tea shoot-aphid complexes emit volatile synomones, while the odors from tea aphids, aphidcuticle extracts, and tea aphid honeydew contain kairomones, to which the natulal enemies show a logistic dose-response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aphids* / drug effects
  • Aphids* / physiology
  • Behavior, Animal / drug effects*
  • Dose-Response Relationship, Drug
  • Electrophysiology
  • Oils, Volatile / administration & dosage
  • Oils, Volatile / pharmacology*
  • Pheromones / administration & dosage
  • Pheromones / pharmacology*
  • Plant Shoots
  • Tea*

Substances

  • Oils, Volatile
  • Pheromones
  • Tea