Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Feb 1;55(2):392-406.
doi: 10.1016/s0360-3016(02)04143-3.

Significant Reductions in Heart and Lung Doses Using Deep Inspiration Breath Hold With Active Breathing Control and Intensity-Modulated Radiation Therapy for Patients Treated With Locoregional Breast Irradiation

Affiliations
Comparative Study

Significant Reductions in Heart and Lung Doses Using Deep Inspiration Breath Hold With Active Breathing Control and Intensity-Modulated Radiation Therapy for Patients Treated With Locoregional Breast Irradiation

Vincent M Remouchamps et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To evaluate the heart and lung sparing effects of moderate deep inspiration breath hold (mDIBH) achieved using an active breathing control (ABC) device, compared with free breathing (FB) during treatment with deep tangents fields (DT) for locoregional (LR) irradiation of breast cancer patients, including the internal mammary (IM) nodes (IMNs). To compare the DT-mDIBH technique to other standard techniques and to evaluate the dosimetric effect of intensity-modulated radiation therapy (IMRT).

Methods and materials: Fifteen patients (9 left-sided and 6 right-sided lesions) with Stages 0-III breast cancer underwent standard FB and ABC computed tomographic (CT) scans in the treatment position. A dosimetric planning study was performed. In FB, the 9 left-sided patients were planned with a 5-field technique where electron fields covering the IM region were matched to shallow tangents using wedges (South West Oncology Group [SWOG] protocol S9927 technique A). This method was compared with a 3-field DT technique covering the breast and the IMNs (SWOG S9927 technique B). Compensation with IMRT was then compared with wedges for each technique. For the 15 total patients, dosimetric planning using DT with IMRT was then reoptimized on the mDIBH CT data set for comparison. Dose-volume histograms for the clinical target volume (CTV) (including the IMNs), planning target volume (PTV), ipsilateral and contralateral breast, and organs at risk (OAR) were analyzed. In addition, normal tissue complication probabilities (NTCP) for lung and heart, mean lung doses, and the number of monitor units (MUs) for a 1.8 Gy fraction were compared.

Results: For the 9 left-sided patients, the mean percentage of heart receiving more than 30 Gy (heart V30) was lower with the 5-field wedged technique than with the DT wedged technique (6.8% and 19.1%, respectively, p < 0.004). For the DT technique, the replacement of wedges with IMRT slightly diminished the mean heart V30 to 16.3% (p < 0.51). The introduction of mDIBH to the DT-IMRT technique reduced the heart V30 by 81% to a mean of 3.1% (p < 0.0004). Compared with 5-field IMRT, DT-IMRT with mDIBH reduced the heart V30 for 6 of the 9 patients, entirely avoiding heart irradiation in 2 of these 6 patients. For DT-IMRT, mDIBH reduced the mean lung dose and NTCP to levels obtained with the 5-field IMRT technique. For the 15 patients planned with DT-IMRT in FB, the use of mDIBH reduced the mean percentage of both lungs receiving more than 20 Gy from 20.4% to 15.2% (p < 0.00007). With DT-IMRT, more than 5% of the contralateral breast received more than 10 Gy for 6 of the 9 left-sided patients in FB, 3 of those 9 patients in mDIBH, and only 1 of those 9 patients planned with 5 fields. The mean % of the PTV receiving more than 55 Gy (110% of the prescribed dose) was 36.4% for 5-field wedges, 33.4% for 5-field IMRT, 28.7% for DT-wedges, 12.5% for DT-IMRT, and 18.4% for DT-IMRT mDIBH. The CTV remained covered by the 95% isodose in all the DT plans but one (99.1% of the volume covered). DT-wedges required more MUs than DT-IMRT (mean of 645 and 416, respectively, p < 0.00004).

Conclusion: mDIBH significantly reduces heart and lung doses when DT are used for LR breast irradiation including the IMNs. Compared with shallow tangents matched with electrons, DT with mDIBH reduces the heart dose (in most patients) and results in comparable lung toxicity parameters, but may increase the dose to the contralateral breast. IMRT improves dose homogeneity, slightly reduces the dose to the heart, and diminishes the number of MUs required.

Similar articles

See all similar articles

Cited by 69 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback