Morphological quantification of emphysema in small human lung specimens: comparison of methods and relation with clinical data

Mod Pathol. 2003 Jan;16(1):1-7. doi: 10.1097/01.MP.0000043519.29370.C2.

Abstract

Small human lung specimens are frequently used for cell biological studies of the pathogenesis of emphysema. In general, lung function and other clinical parameters are used to establish the presence and severity of emphysema/chronic obstructive pulmonary disease without morphological analysis of the specimens under investigation. In this study we compared three morphological methods to analyze emphysema, and evaluated whether clinical data correlate with the morphological data of individual lung samples. A total of 306 lung specimens from resected lung(lobes) from 221 patients were inflated and characterized using three morphological parameters: the Destructive Index, the Mean Linear Intercept, and Section Assessment. Morphological data were related to each other, to lung function data, and to smoking behavior. Significant correlations (P < .001) were observed between Section Assessment and Destructive Index (r = 0.92), Mean Linear Intercept with Destructive Index (r = 0.69) and Mean Linear Intercept with Section Assessment (r = 0.65). Section Assessment, being much less time consuming than Mean Linear Intercept and Destructive Index, is the parameter of choice for initial analysis. Destructive Index is the most sensitive parameter. There was a significant (P < .001), but weak correlation for all three parameters with the diffusion capacity for CO (K(CO)) (Destructive Index: r = -0.28; Mean Linear Intercept: r = -0.34; Section Assessment: r = -0.32), and with FEV(1)/IVC (Destructive Index: r = -0.29; Mean Linear Intercept: r = -0.33; Section Assessment: r = -0.28), but not with other lung function parameters. A significant difference (P < .05) between (ex-) smokers and never-smokers was observed for Destructive Index and Section Assessment. It is concluded that the application of the three morphological parameters represents a useful method to characterize emphysematous lesions in a (semi-)quantitative manner in small human lung specimens, and that Section Assessment is a suitable and fast method for initial screening. The extent of emphysema of individual lung specimens should be established by means of morphometry, rather than lung function data.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Female
  • Humans
  • Lung / pathology*
  • Lung / physiopathology
  • Lung / surgery
  • Male
  • Middle Aged
  • Pulmonary Alveoli / pathology
  • Pulmonary Emphysema / classification
  • Pulmonary Emphysema / pathology*
  • Pulmonary Emphysema / physiopathology
  • Pulmonary Emphysema / surgery
  • Respiratory Function Tests
  • Smoking
  • Specimen Handling / methods