We determined whether mitogen-activated protein kinase (MAPK) and 5'-AMP-activated protein kinase (AMPK) signalling cascades are activated in response to intense exercise in skeletal muscle from six highly trained cyclists (peak O(2) uptake (.V(O2,peak)) 5.14 +/- 0.1 l min(-1)) and four control subjects (Vdot;(O(2))(,peak) 3.8 +/- 0.1 l min(-1)) matched for age and body mass. Trained subjects completed eight 5 min bouts of cycling at approximately 85% of .V(O2,peak) with 60 s recovery between work bouts. Control subjects performed four 5 min work bouts commencing at the same relative, but a lower absolute intensity, with a comparable rest interval. Vastus lateralis muscle biopsies were taken at rest and immediately after exercise. Extracellular regulated kinase (ERK1/2), p38 MAPK, histone H3, AMPK and acetyl CoA-carboxylase (ACC) phosphorylation was determined by immunoblot analysis using phosphospecific antibodies. Activity of mitogen and stress-activated kinase 1 (MSK1; a substrate of ERK1/2 and p38 MAPK) and alpha(1) and alpha(2) subunits of AMPK were determined by immune complex assay. ERK1/2 and p38 MAPK phosphorylation and MSK1 activity increased (P < 0.05) after exercise 2.6-, 2.1- and 2.0-fold, respectively, in control subjects and 1.5-, 1.6- and 1.4-fold, respectively, in trained subjects. Phosphorylation of histone H3, a substrate of MSK1, increased (P < 0.05) approximately 1.8-fold in both control and trained subject. AMPKalpha(2) activity increased (P < 0.05) after exercise 4.2- and 2.3-fold in control and trained subjects, respectively, whereas AMPKalpha(1) activity was not altered. Exercise increased ACC phosphorylation (P < 0.05) 1.9- and 2.8-fold in control and trained subjects. In conclusion, intense cycling exercise in subjects with a prolonged history of endurance training increases MAPK signalling to the downstream targets MSK1 and histone H3 and isoform-specific AMPK signalling to ACC. Importantly, exercise-induced signalling responses were greater in untrained men, even at the same relative exercise intensity, suggesting muscle from previously well-trained individuals requires a greater stimulus to activate signal transduction via these pathways.