Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance

Emerg Infect Dis. 2003 Jan;9(1):10-6. doi: 10.3201/eid0901.020172.

Abstract

The global emergence of antibacterial resistance among common and atypical respiratory pathogens in the last decade necessitates the strategic application of antibacterial agents. The use of bactericidal rather than bacteriostatic agents as first-line therapy is recommended because the eradication of microorganisms serves to curtail, although not avoid, the development of bacterial resistance. Bactericidal activity is achieved with specific classes of antimicrobial agents as well as by combination therapy. Newer classes of antibacterial agents, such as the fluoroquinolones and certain members of the macrolide/lincosamine/streptogramin class have increased bactericidal activity compared with traditional agents. More recently, the ketolides (novel, semisynthetic, erythromycin-A derivatives) have demonstrated potent bactericidal activity against key respiratory pathogens, including Streptococcus pneumoniae, Haemophilus influenzae, Chlamydia pneumoniae, and Moraxella catarrhalis. Moreover, the ketolides are associated with a low potential for inducing resistance, making them promising first-line agents for respiratory tract infections.

Publication types

  • Review

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Anti-Bacterial Agents / therapeutic use
  • Drug Resistance, Bacterial* / genetics
  • Drug Therapy, Combination
  • Gram-Negative Bacteria / drug effects*
  • Gram-Negative Bacteria / growth & development
  • Gram-Negative Bacterial Infections / drug therapy
  • Gram-Negative Bacterial Infections / microbiology
  • Humans
  • Ketolides*
  • Macrolides*
  • Pneumonia, Pneumococcal / drug therapy
  • Pneumonia, Pneumococcal / microbiology
  • Respiratory Tract Infections / drug therapy
  • Respiratory Tract Infections / microbiology*
  • Streptococcus pneumoniae / drug effects*
  • Streptococcus pneumoniae / growth & development

Substances

  • Anti-Bacterial Agents
  • Ketolides
  • Macrolides
  • telithromycin