The Des pathway of Bacillus subtilis regulates the expression of the acyl-lipid desaturase, Des, thereby controlling the synthesis of unsaturated fatty acids from saturated phospholipid precursors. Activation of this pathway takes place when cells are shifted to low growth temperature or when they are grown in minimal media in the absence of isoleucine supplies. The master switch for the Des pathway is a two-component regulatory system composed of a membrane-associated kinase, DesK, and a soluble transcriptional regulator, DesR, which stringently controls transcription of the des gene. We propose that both, a decrease in membrane fluidity at constant temperature and a temperature downshift induce des by the same mechanism, involving the ability of DesK to sense a decrease in membrane fluidity.