Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;130(5):835-43.
doi: 10.1242/dev.00309.

Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte

Affiliations

Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte

Stefania Castagnetti et al. Development. 2003 Mar.

Abstract

During Drosophila oogenesis, the posterior determinant, Oskar, is tightly localized at the posterior pole of the oocyte. The exclusive accumulation of Oskar at this site is ensured by localization-dependent translation of oskar mRNA: translation of oskar mRNA is repressed during transport and activated upon localization at the posterior cortex. Previous studies have suggested that oskar translation is poly(A)-independent. We show that a long poly(A) tail is required for efficient oskar translation, both in vivo and in vitro, but is not sufficient to overcome BRE-mediated repression. Moreover, we show that accumulation of Oskar activity requires the Drosophila homolog of Cytoplasmic Polyadenylation Element Binding protein (CPEB), Orb. As posterior localization of oskar mRNA is an essential prerequisite for its translation, it was critical to identify an allele of orb that does localize oskar mRNA to the posterior pole of the oocyte. We show that flies bearing the weak mutation orb(mel) localize oskar transcripts with a shortened poly(A) that fails to enhance oskar translation, resulting in reduced Oskar levels and posterior patterning defects. We conclude that Orb-mediated cytoplasmic polyadenylation stimulates oskar translation to achieve the high levels of Oskar protein necessary for posterior patterning and germline differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources