In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes
- PMID: 12549739
- DOI: 10.1109/TBME.2002.805487
In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes
Abstract
Stimulating electrode materials must be capable of supplying high-density electrical charge to effectively activate neural tissue. Platinum is the most commonly used material for neural stimulation. Two other materials have been considered: iridium oxide and titanium nitride. This study directly compared the electrical characteristics of iridium oxide and titanium nitride by fabricating silicon substrate probes that differed only in the material used to form the electrode. Electrochemical measurements indicated that iridium oxide had lower impedance and a higher charge storage capacity than titanium nitride, suggesting better performance as a stimulating electrode. Direct measurement of the electrode potential in response to a biphasic current pulse confirmed that iridium oxide uses less voltage to transfer the same amount of charge, therefore using less power. The charge injection limit for titanium nitride was 0.87 mC/cm2, contradicting other reports estimating that titanium nitride was capable of injecting 22 mC/cm2. Iridium oxide charge storage was 4 mC/cm2, which is comparable to other published values for iridium oxide. Electrode efficiency will lead to an overall more efficient and effective device.
Similar articles
-
In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.IEEE Trans Biomed Eng. 2005 Sep;52(9):1612-4. doi: 10.1109/TBME.2005.851503. IEEE Trans Biomed Eng. 2005. PMID: 16189975
-
In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.Biomed Mater. 2010 Feb;5(1):15007. doi: 10.1088/1748-6041/5/1/015007. Epub 2010 Feb 3. Biomed Mater. 2010. PMID: 20124668
-
Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.IEEE Trans Biomed Eng. 2006 Feb;53(2):327-32. doi: 10.1109/TBME.2005.862572. IEEE Trans Biomed Eng. 2006. PMID: 16485762
-
Neural stimulation and recording electrodes.Annu Rev Biomed Eng. 2008;10:275-309. doi: 10.1146/annurev.bioeng.10.061807.160518. Annu Rev Biomed Eng. 2008. PMID: 18429704 Review.
-
Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.J Physiol Paris. 2012 May-Aug;106(3-4):137-45. doi: 10.1016/j.jphysparis.2011.10.001. Epub 2011 Oct 18. J Physiol Paris. 2012. PMID: 22027264 Review.
Cited by
-
Functional Electrochemistry: On-Nerve Assessment of Electrode Materials for Electrochemistry and Functional Neurostimulation.IEEE Open J Eng Med Biol. 2024 Jan 22;5:59-65. doi: 10.1109/OJEMB.2024.3356818. eCollection 2024. IEEE Open J Eng Med Biol. 2024. PMID: 38445242 Free PMC article.
-
Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies.Front Integr Neurosci. 2024 Feb 19;18:1321872. doi: 10.3389/fnint.2024.1321872. eCollection 2024. Front Integr Neurosci. 2024. PMID: 38440417 Free PMC article. Review.
-
Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review.APL Bioeng. 2023 Sep 19;7(3):031505. doi: 10.1063/5.0152669. eCollection 2023 Sep. APL Bioeng. 2023. PMID: 37736015 Free PMC article. Review.
-
Soft, bioresorbable, transparent microelectrode arrays for multimodal spatiotemporal mapping and modulation of cardiac physiology.Sci Adv. 2023 Jul 7;9(27):eadi0757. doi: 10.1126/sciadv.adi0757. Epub 2023 Jul 5. Sci Adv. 2023. PMID: 37406128 Free PMC article.
-
Translational opportunities and challenges of invasive electrodes for neural interfaces.Nat Biomed Eng. 2023 Apr;7(4):424-442. doi: 10.1038/s41551-023-01021-5. Epub 2023 Apr 20. Nat Biomed Eng. 2023. PMID: 37081142 Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
