Previous work has demonstrated that acute and chronic administration of amphetamine causes phosphorylation of the transcription factor CREB, the cAMP response element (CRE) binding protein, in striatum, a brain region important for the behavioral actions of the drug. To determine whether such phosphorylation is associated with changes in CREB transcriptional activity, we mapped beta-galactosidase (beta-gal) expression in a CRE-LacZ transgenic mouse, in which the beta-gal reporter is downstream of CRE sequences, following acute or chronic amphetamine administration. We found that acute amphetamine induced beta-gal expression in a relatively small number of brain regions, including nucleus accumbens (ventral striatum), amygdala, ventral tegmental area, and locus coeruleus. Chronic amphetamine generally produced greater changes in CRE-mediated transcription in most brain regions and induced CRE-transcription in several regions unaffected by acute drug exposure. Interestingly, amphetamine regulation of CRE activity differed dramatically between males and females. In nucleus accumbens, beta-gal expression colocalized predominantly with dynorphinergic neurons after acute amphetamine administration, while chronic administration induced beta-gal expression in both dynorphinergic and enkephalinergic neurons. In ventral tegmental area, acute and chronic amphetamine induced beta-gal expression mainly in dopaminergic neurons, while induction in the locus coeruleus occurred mainly in nonnoradrenergic neurons. This study identifies several brain regions where CRE-mediated transcription may play a key role in the development of neuronal plasticity associated with amphetamine administration.
Copyright 2003 Wiley-Liss, Inc.