PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex

J Physiol. 2003 Feb 1;546(Pt 3):859-67. doi: 10.1113/jphysiol.2002.031369.

Abstract

PSD-95 is one of the most abundant proteins found in the postsynaptic density of excitatory synapses. However, the precise functional role played by PSD-95 in regulating synaptic transmission and plasticity remains undefined. To address this issue, we have overexpressed PSD-95 in cortical pyramidal neurons in organotypic brain slices using particle-mediated gene transfer and assessed the consequences on synaptic transmission and plasticity. The AMPA receptor/NMDA receptor (AMPAR/NMDAR) ratio of evoked EPSCs recorded at +40 mV was greater in PSD-95-transfected pyramidal neurons than in controls. This difference could not be accounted for by a change in rectification of AMPAR-mediated synaptic currents since the current-voltage curves obtained in controls and in PSD-95-transfected neurons were indistinguishable. However, the amplitude of AMPAR-mediated evoked EPSCs was larger in PSD-95-transfected neurons compared to matched controls. Paired-pulse ratio analysis suggested that overexpression of PSD-95 did not alter presynaptic release probability. Transfection of PSD-95 was further accompanied by an increase in the frequency, but not amplitude, of AMPAR-mediated mEPSCs. Together, these results indicate that transfection of PSD-95 increased AMPAR-mediated synaptic transmission. Furthermore, they suggest that this phenomenon reflects an increased number of synapses expressing AMPARs rather than an increased number or function of these receptors at individual synapses. We tested the consequences of these changes on synaptic plasticity and found that PSD-95 transfection greatly enhanced the probability of observing long-term depression. These results thus identify a physiological role for PSD-95 and demonstrate that this protein can play a decisive role in controlling synaptic strength and activity-dependent synaptic plasticity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / physiology*
  • Disks Large Homolog 4 Protein
  • Excitatory Postsynaptic Potentials / drug effects
  • In Vitro Techniques
  • Intracellular Signaling Peptides and Proteins
  • Long-Term Synaptic Depression
  • Male
  • Membrane Proteins
  • Nerve Tissue Proteins / pharmacology
  • Nerve Tissue Proteins / physiology*
  • Neuronal Plasticity / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / physiology
  • Receptors, N-Methyl-D-Aspartate / physiology
  • Synapses / drug effects
  • Synapses / physiology
  • Synaptic Transmission / physiology*

Substances

  • Disks Large Homolog 4 Protein
  • Dlg4 protein, rat
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • Nerve Tissue Proteins
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • postsynaptic density proteins