Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;57(2):443-55.
doi: 10.1016/s0008-6363(02)00696-x.

Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays

Affiliations

Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays

June Yun et al. Cardiovasc Res. 2003 Feb.

Abstract

Objective: Cardiac hypertrophy is closely associated with the development of cardiomyopathies that lead to heart failure. The alpha(1B) adrenergic receptor (alpha(1)-AR) is an important regulator of the hypertrophic process. Cardiac hypertrophy induced by systemic overexpression of the alpha(1b)-AR in a mouse model does not progress to heart failure. We wanted to explore potential gene expression differences that characterize this type of hypertrophy that may identify genes that prevent progression to heart failure.

Methods: Transgenic and normal mice (B6CBA) representing two time points were compared; one at 2-3 months of age before disease manifests and the other at 12 months when the hypertrophy is significant. Age-matched hearts were removed, cRNA prepared and biotinylated. Aliquots of the cRNA was subjected to hybridization with Affymetrix chips representing 12,656 murine genes. Gene expression profiles were compared with normal age-matched controls as the baseline and confirmed by Northern and Western analysis.

Results: The non-EST genes could be grouped into five functional classifications: embryonic, proliferative, inflammatory, cardiac-related, and apoptotic. Growth response genes involved primarily Src-related receptors and signaling pathways. Transgenic hearts also had a 60% higher Src protein content. There was an inflammatory response that was verified by an increase in IgG and kappa-chained immunoglobulins by western analysis. Apoptosis may be regulated by cell cycle arrest through a p53-dependent mechanism. Cardiac gene expression was decreased for common hypertrophy-inducing proteins such as actin, collagen and GP130 pathways.

Conclusions: Our results suggest a profile of gene expression in a case of atypical cardiac hypertrophy that does not progress to heart failure. Since many of these altered gene expressions have not been linked to heart failure models, our findings may provide a novel insight into the particular role that the alpha(1B)AR plays in its overall progression or regression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms