Propagating waves in visual cortex: a large-scale model of turtle visual cortex
- PMID: 12567015
- DOI: 10.1023/a:1021954701494
Propagating waves in visual cortex: a large-scale model of turtle visual cortex
Abstract
This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 microm/ms to 70 microm/ms and occasionally reflect from the caudolateral border of the cortex.
Similar articles
-
Two cortical circuits control propagating waves in visual cortex.J Comput Neurosci. 2005 Dec;19(3):263-89. doi: 10.1007/s10827-005-2288-5. J Comput Neurosci. 2005. PMID: 16284712
-
Extracting wave structure from biological data with application to responses in turtle visual cortex.J Comput Neurosci. 2004 May-Jun;16(3):267-98. doi: 10.1023/B:JCNS.0000025689.01581.26. J Comput Neurosci. 2004. PMID: 15114050
-
Temporal dispersion windows in cortical neurons.J Comput Neurosci. 1999 Jul-Aug;7(1):71-87. doi: 10.1023/a:1008971628011. J Comput Neurosci. 1999. PMID: 10482003
-
How much feedback from visual cortex to lateral geniculate nucleus in cat: a perspective.Vis Neurosci. 2004 Jul-Aug;21(4):487-500. doi: 10.1017/S0952523804214018. Vis Neurosci. 2004. PMID: 15579216 Review.
-
The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.Exp Brain Res. 1986;63(1):1-20. doi: 10.1007/BF00235642. Exp Brain Res. 1986. PMID: 3015651 Review.
Cited by
-
Slow and fast pulses in 1-D cultures of excitatory neurons.J Comput Neurosci. 2009 Jun;26(3):475-93. doi: 10.1007/s10827-008-0123-5. Epub 2009 Jan 24. J Comput Neurosci. 2009. PMID: 19169802
-
Laminar circuit organization and response modulation in mouse visual cortex.Front Neural Circuits. 2012 Oct 5;6:70. doi: 10.3389/fncir.2012.00070. eCollection 2012. Front Neural Circuits. 2012. PMID: 23060751 Free PMC article.
-
Simulation of networks of spiking neurons: a review of tools and strategies.J Comput Neurosci. 2007 Dec;23(3):349-98. doi: 10.1007/s10827-007-0038-6. Epub 2007 Jul 12. J Comput Neurosci. 2007. PMID: 17629781 Free PMC article. Review.
-
Oscillations in large-scale cortical networks: map-based model.J Comput Neurosci. 2004 Sep-Oct;17(2):203-23. doi: 10.1023/B:JCNS.0000037683.55688.7e. J Comput Neurosci. 2004. PMID: 15306740
-
Two cortical circuits control propagating waves in visual cortex.J Comput Neurosci. 2005 Dec;19(3):263-89. doi: 10.1007/s10827-005-2288-5. J Comput Neurosci. 2005. PMID: 16284712
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases